Un blog du professeur pour les lycéens souhaitant relire leurs cours ou approfondir le programme.

Les articles du blog apparaissent dans l'ordre de publication le plus récent. Pour rechercher un article, utiliser le sommaire par classe.

lundi 16 octobre 2023

T1_C1_4_L’expression du patrimoine génétique

T1_C1_4_L’expression du patrimoine génétique 


    T1_C1_4_1 Les étapes de l'expression des gènes


La séquence de l'ADN, succession des quatre désoxyribonucléotides (A - T, G - C) le long des brins complémentaires de la molécule, est une information. Cette information est transmise de générations en générations.


A5 :

-  Mener une démarche historique ou une étude documentaire permettant de comprendre comment les ARN messagers ont été découverts.
-  Rechercher et exploiter des documents montrant la synthèse et la présence d'ARN dans différents types cellulaires ou dans différentes conditions expérimentales.


À chaque génération, cette information est exprimée par l’intermédiaire d’un autre acide nucléique : l’ARN.

Comparaison de la molécules d'ARN et d'ADN
L'ARN est une molécule simple brin (linéaire : ARNpm, ARNm, ou avec une structure 3D : ARNt, ARNr,..) constituée de quatre ribonucléotides complémentaires (A - U ; G - C)


Les molécules d'ARN sont
synthétisées par complémentarité des nucléotides à partir de l'ADN (brin transcrit) lors d’un processus dénommé transcription mettant en jeu un complexe de protéines enzymatiques dont l'ARN polymérase.


Electronographie de la transcription de l'ADN en ARNpm

vidéo de la modélisation moléculaire du complexe enzymatique de la Transcription

Chez les eucaryotes, la transcription a lieu dans le noyau et certains des ARN formés, après maturation éventuelle (épissage simple ou épissage alternatif de l'ARNpm en ARNm), sont exportés dans le cytoplasme.


Le transfert des ARN de l'intérieur du noyau vers le cytoplasme s'effectue via les pores nucléaires, des canaux protéiques qui traversent l'enveloppe nucléaire.

Les méthodes de marquage moléculaire (fluorescence et autoradiographie) et de microscopie électronique (cryofracture, ombrage aux métaux lourds) ont permis de localiser les structures et visualiser le parcours de l'ARN dans la cellule.







Parmi tous les ARN, se trouvent les ARN messagers (ARNm) qui dirigent la synthèse de protéines lors d’un processus dénommé traduction.


Bilan 1 :



 

T1_C1_4_2 Le code génétique


Le code génétique est un système de correspondance, universel à l’ensemble du monde vivant, avec des redondances (plusieurs codons (un codon = 3 ribonucléotides) codent pour un même acides aminés) qui permet la traduction de l’ARN messager en polypeptides (futures protéines).  



L'information génétique portée par une molécule d'ARN messager (ARNm = message génétique) est ainsi convertie en une information fonctionnelle (la séquence des acides aminés de la protéine) : c'est la traduction.




T1_C1_4_3 L'expression des gènes à l'origine du phénotype


Le phénotype résulte de l’ensemble des produits de l’ADN (protéines et ARN) présents dans la cellule. Il dépend du patrimoine génétique (le génotype) et de son expression (facteurs de transcription). L’activité ou l'expression des gènes de la cellule est régulée sous l’influence de facteurs internes à l’organisme (développement) et de facteurs externes (réponses aux conditions de l’environnement). 


Le phénotype à différente échelle est contrôlé par des facteurs internes et par des facteurs externes en utilisant l'intermédiaire de facteur de transcription.

La différenciation cellulaire : l'expression des gènes responsables de la spécialisation cellulaire est estimée par la présence des ARNm correspondant, par exemple grâce à des puces à ADN.

L'expression des gènes est contrôlée par des facteurs de transcription (exemple du second messager de l'hormone EPO, contrôle de l'expression des gènes de l'hémoglobine)


Notions fondamentales : transcription, traduction, pré-ARNm, ARNm, codon, riboses, génotype, phénotype. 


Objectifs : les élèves relient un gène à ses produits (ARN et protéines) et comprennent ainsi que l’existence d'une étape intermédiaire (ARN) permet de nombreuses régulations. Ils appréhendent la différence essentielle entre information et code. 


Capacités 

-  Calculer le nombre de combinaisons possibles de séquences de n nucléotides de longueur quand n grandit. Comparer à un code binaire utilisé en informatique.
-  Calculer le nombre de combinaisons possibles de séquences de n acides aminés quand n grandit. Comparer au calcul réalisé pour l’ADN.
-  Mener une démarche historique ou une étude documentaire sur le séquençage des macromolécules (protéines, ARN et ADN).
-  Mener une démarche historique ou une étude documentaire permettant de comprendre comment les ARN messagers ont été découverts.
-  Rechercher et exploiter des documents montrant la synthèse et la présence d'ARN dans différents types cellulaires ou dans différentes conditions expérimentales.
-  Étudier les expériences historiques permettant de comprendre comment le code génétique a été élucidé.
-  Concevoir un algorithme de traduction d’une séquence d’ARN et éventuellement le programmer dans un langage informatique (par exemple Python).
-  Rechercher et exploiter des documents montrant la synthèse de protéines hétérologues après transgénèse (illustrant l’universalité du code génétique).
-  Caractériser à l’aide d’un exemple les différentes échelles d’un phénotype (moléculaire, cellulaire, de l’organisme).


Précisions : les nombreuses catégories d'ARN, les processus de maturation des ARN, et les processus moléculaires de transcription et de traduction (avec les ARNt et ARNr) sont hors programme.